Hierarchical Latent Class Models and Statistical Foundation for Traditional Chinese Medicine
نویسندگان
چکیده
The theories of traditional Chinese medicine (TCM) originated from experiences doctors had with patients in ancient times. We ask the question whether aspects of TCM theories can be reconstructed through modern day data analysis. We have recently analyzed a TCM data set using a machine learning method and found that the resulting statistical model matches the relevant TCM theory well. This is an exciting discovery because it shows that, contrary to common perception, there are scientific truths in TCM theories. It also suggests the possibility of laying a statistical foundation for TCM through data analysis and thereby turning it into a modern science.
منابع مشابه
Beyond Sem: General Latent Variable Modeling
This article gives an overview of statistical analysis with latent variables. Using traditional structural equation modeling as a starting point, it shows how the idea of latent variables captures a wide variety of statistical concepts, including random effects, missing data, sources of variation in hierarchical data, finite mixtures, latent classes, and clusters. These latent variable applicat...
متن کاملSpatial Latent Gaussian Models: Application to House Prices Data in Tehran City
Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...
متن کاملLatent tree models and diagnosis in traditional Chinese medicine
OBJECTIVE TCM (traditional Chinese medicine) is an important avenue for disease prevention and treatment for the Chinese people and is gaining popularity among others. However, many remain skeptical and even critical of TCM because of a number of its shortcomings. One key shortcoming is the lack of objective diagnosis standards. We endeavor to alleviate this shortcoming using machine learning t...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملAn investigation Into Traditional Chinese Medicine Hospitals in China: Development Trend and Medical Service Innovation
Background This paper aims to investigate the development trend of traditional Chinese medicine (TCM) hospitals in China and explore their medical service innovations, with special reference to the changing co-existence with western medicine (WM) at TCM hospitals. Methods Quantitative data at macro level was collected from official databases of China Health Statistical Yearbook and Extracts o...
متن کامل